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ABSTRACT 

The system of equations describing the motion of a barotropic fluid with a free surface is solved by using finite- 
difference methods which are based on the two-step Lax-Wendroff scheme proposed by Richtmyer. The model has 
rigid boundaries along two latitude circles and the beta-plane approximation is adopted. Initial conditions are given 
for an ageostrophic jet flow and computations are carried out up to 100 days or 19,200 time steps in order to observe 
the long-term stability and truncation error properties of the numerical schemes. 

A series of integrations is performed using different numerical formulations for the Coriolis term and the 
boundary conditions. A Fickian type smoothing is introduced to control truncation errors for some of the cases. 
It is found that the numerical results depend critically upon the method for handling the Coriolis term. One scheme 
gives a relatively constant total energy during che entire 100 days while the rest of the schemes either develop insta- 
bility or give damped solutions. All of the solutions differ somewhat after 50 days, thus demonstrating sensitivity to 
the difference formulation. An additional solution was found for a slightly perturbed initial condition and the solu- 
tion departed similarly from the other solutions. This suggests that the long-term “deterministic predictability” 
or sensitivity of the solution of numerical models for large-scale atmospheric motions is as much a function of details 
in the difference equations as it is of the accuracy in the initial conditiom. 

1. INTRODUCTION 
The achievements in short-term numerical weather 

predictions have encouraged attempts t,o make long-term 
numerical predictions. However, there are many obstacles 
to obtaining meaningful long-term numerical solutions of 
meteorological equations. For example the effects of 
numerical stability and truncation error become far more 
pronounced as short-term integrations are extended to 
long-term. Similarly, errors or inconsistencies in the 
initial conditions may have a significant effect on the 
solution after a large number of time steps. 

In  this study an attempt is made to derive a satisfactory 
scheme for the long-term integration of an atmospheric 
model. By employing a simple barotropic model, many 
experiments with various finite-diff erence formulations 
can be made which enable us to observe sensitivities in the 
long-term solutions and to examine some of the problems 
relating to  long-term integrations. Many finite-diff erence 
schemes have been proposed for integration of the primi- 
tive equations. See for example Richtmyer [5] and 
Shuman [7]. We chose to use formulations based on ‘the 
two-step Lax-Wendroff scheme proposed by Richt,myer 
[6], because i t  has not been tested extensively enough on 
the atmospheric problems. (See also the original paper by 
Lax and Wendroff [2].) This Lax-Wendroff scheme was 
developed to handle equations written entirely in “di- 
vergence” form and does not prescribe uniquely the 

*A portion of this paper was presented at the 237th National Meeting of the American 
MeteoroIogical Society, April 1965, Washington, D.C.,  under the title “Predictability 
in a Numerical Prediction Model.” 

treatment of boundary conditions or of the Coriolis 
term. Therefore, in this paper special attention w i l l  be 
given to the handling of the Coriolis term and the 
boundary conditions. A Fickian type smoothing operator 
is introduced in some cases to control truncation errors in 
the numerical solution. 

We first study the difference formulations to  be sure 
that the schemes are stable for the linearized equations. 
This is useful since it sheds light on some of the general 
tendencies that might be expected in the nonlinear 
solutions. However, the final test of the methods is in 
the numerical integrations. Integrations are carried out 
up to 100 days (19,200 time steps) for a series of nine 
experiments encompassing various formulations of both 
the Coriolis term and the boundary conditions. The 
general behavior of the solutions is examined by observing 
the computed total energy trend. 

The solutions are analyzed further by comparing each 
with the solution obtained by the “best” scheme. This 
enables us to observe some of the differences in the 
solutions due to the nature of the stability and the 
truncation error of the schemes. In  order to exhibit the 
sensitivity of this barotropic model, an integration is 
performed with the “best” difference scheme and initial 
conditions having a slight “error.” 

2. PHYSICAL MODEL 
The model used in this study is an incompressible, homo- 

geneous, inviscid, and hydrostatic fluid confined in a 
channel corresponding to a middle-latitude band on the 
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earth. The lower surface is flat and rigid, but the upper 
surface is free. The northern and southern boundaries, 
4,800 km. apart, are rigid “walls,” where the north-south 

be periodic in the east-west direction with a wavelength of 
5,760 km. 

In  order to reduce the speed of gravity waves in this one- 
layer model, an inert fluid of infinite depth is placed above 
the fluid of interest. The pressure gradients in the lower 
fluid depend only upon the slope of the interface between 
the fluids multiplied by a value proportional to the differ- 
ence in the densities of the two fluids. Therefore, the 
model is equivalent t o  a one-layer model with a reduced 
acceleration of gravity. The value of reduced accelera- 
tion of gravity is taken as 1.4 m. sec.-2 which means the 
density of the upper layer is 0.86 of that in the lower layer. 

The basic equations for this model in Eulerian form are 

I component of velocity vanishes. The flow is assumed to 

The beta-plane approximation is used. 

bu bu bu ah -+u -+v -- j v+g -=o, 
at bx by  bX 

av av ah 
dt bx &y bY 
@+u-+v -+ju+g -=o, 

(2.3) 

Variables are defined as follows: 

x, y:  east-west and north-south coordinates 
u, o: velocity components in the x- and y-directions 

t :  time 
h: ‘depth of the fluid 
f: Coriolis parameter 
g: reduced acceleration of gravity. 

The equation for total energy (potential plus kinetic) in- 
tegrated over the channel derived from (2.1)-(2.3) is 

-=-D, bE 
bt 

I where E is the total energy defined by 

(2.4) 

Here u is the total area of integration and D, is the rate of 
energy dissipation which ,,vanishes for an inviscid fluid. 
Thus, the total energy is conserved in this model. 

Let us rewrite (2.1) to (2.3) in the following “diver- 
gence” form and add a Fickian type smoothing term for 
the purpose of controlling truncation errors : 

bU bP bQ 
at bx by  -+- +-= j R  + vh, ‘hV2M (3.1) 

where U, P, Q, R, and M are the column matrices defined 
by 

in which m=hu and n=hv. Also in (3.1), 

h0 is a mean depth of the fluid and v is the coefficient of 
smoothing. Note that the Fickian type smoothing 
represents viscous dissipation in the fluid. Upon applying 
the boundary conditions of the problem, the rate of 
energy dissipation D, now takes the form, 

which is non-negative and decreases the total energy 
of the numerical solution with time. 

Let us denote any function S(x, y, t )  of x=jAx, y=kAy, 
and t=lAt as Sisk where j ,  k, and 1 are integers. In 
this problem, the space increment Ax is taken equal to 
Ay both of which are denoted by As. The time in- 
crement is denoted b y ’  At. The two-step difference 
equations used for (3.1) consist of the following two 
equations which are used at  alternate time cycles. 

u ~ ~ ~ = ~ : ,  k-$dAzP:, k+Av&f, k 1  

, (3.3a) -p{ aR:,k,$(l-a)[(l-E)@, k+eR:?Jf,’l 1 

, (3.3b) 

s + z - u z  uj, k - j ,  k-dAzP:,+~’+AvQ;,+~I 
3. DIFFERENCE EQUATiONS 

For a given set of differential equations, it is always pos- 
sible to write down various forms of difference equations 
corresponding to the given set. It is one of the objects in 
this study to compare the solutions of various difference 
equations, which are all formula’teb based on the two-step 

-2F( CYR~;,‘ + (1 -a) [ (1 -E) Ri, k+ @;’:] ] 

-f2KHiS kv2Mjv k 

where , 

Lax-Wendroff scheme proposed by Richtmyer [6 ] .  uj, k = t ( u ’ , + l ,  k +u:- 1, k +u:, k + l + u : ,  k - 1 )  1 (3.4) 
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v2Mj, k = 4 ( z j ,  k - M $ ,  k ) ,  (3.5) SCHEME B3: a=O, c=I.O. 

The averaging operator defined by (3.4) applies also for 
R ; , k  and 

Note that (3.3alb) are applied only in the interior of 
the integration domain. The special treatments along 
the boundaries will be discussed later. In (3.3a1 b), the 
symbols (Y and e are parameters, which determine differ- 
ent formulations of the Coriolis term. As noted in the 
introduction, the Lax-Wendroff system does not prescribe 
the formulation for the Coriolis term, so we are a t  liberty 
to try many formulations. The Coriolis term is important 
to attain the geostrophic balance, and it might be expected 
that the various formulations of the Coriolis term would 
cause appreciable differences in the solutions. We shall 
consider the following four different formulations. 
SCHEME A, a=I 

The expression for the Coriolis term, which we shall 
denote by CL henceforth, is 

and 
CL=-FRi,, in (3.3a) 

CL=-2FR$,+,’ in (3.3b). 

Thus, the Coriolis term is evaluated explicitly a t  the 
time level, Z, in the first step and in the second step, it is 
evaluated at  the time level, I f  1, which is midway between 
I and 2+2. We shall refer to Scheme A as the “explicit 
and midway’’ formulation. 
SCHEME B ,  a=O and various values of e. 

In this case, we have 

c ~ = - - F [ ( l - € ) ? i f , k + c R : ~ ~ ]  in (3.3a) 

CL=-2F[ (l-e)R$, k +eR$,+:] in (3.3b). 
and 

The parameter e(0 5 E 5 1) determines a weighted average 
of the Coriolis terms between different time levels. The 
following three different values of e are considered : 

SCHEME BI: a=O, c=O. 
The Coriolis term is evaluated at  a time level 

lagged At12 in step 1 and lagged Ai! in step 2 re- 
spectively. We shall refer to  this as the “explicit- 
lagging” formulation. 
SCHEME B 2 :  a=O, e=0.5.  

The Coriolis term is evaluated as the arith- 
metic average of the two Coriolis terms at  two 
consecutive levels. We shall refer to this case 
as the “averaging” formulation. 

206-048 0 - 66 - 3 

The Coriolis term is evaluated at the time level 
advanced At12 in step 1 and advanced At in step 2,  
respectively. We shall refer to this case as the 
“implicit” formulation. 

The 
periodic boundary conditions a t  the eastern and western 
boundaries are easily handled by adding one extra col- 
umn of grid points outside the eastern and western 
boundaries respectively. Because of the periodicity 
conditions, the values of dependent variables at  the 
additional grid points are obtained directly from the 
grid points of the column next to the boundary a t  the 
opposite side of the integration domain. 

Special handling is required a t  the northern and 
southern boundaries. There, the y component of the 
velocity, u, vanishes a t  all times but the 2 component of 
the velocity, u, and the height, h, must be computed 
from (3.3a, b). We require one additional assumption to  
evaluate the Laplacian operator V and the averaging 
operator defined by (3.5) and (3.4). We assume that 
the derivative b Uldy vanishes a t  these boundaries which 
means that the operators are evaluated by taking that 

free slip condition for viscous flow. 
There is no problem in the evaluation of AzP defined 

by (3.6) on the northern and southern boundaries. The 
problem is how to evaluate A,& there. Since the advection 
operators defined by (3.6) and (3.7) have second-order 
accuracy, it is desirable to evaluate A ~ Q  with second-order 
accuracy at  the boundaries. A usual practice in this 
respect, however, is to  use the first-order uncentered 
difference for this evaluation. Therefore, in this study 
we shall run calculations using both the first- and second- 
order non-centered differences for A& at the boundaries 
and compare the two results. Thus, the AuQ defined by 
(3.7) is expressed as 

Let us now discuss the boundary conditions. 

U j . k + l = U j , k - ,  2 in (3.4), which corresponds to  the 

A , Q : . N = 2 r ( Q : . N - & : , N - 1 )  + (1-y) (3&:.~ 
-4Q4.. N- l+&:.N-2> (3.W 

where the index N represents the grid points on the 
northern boundary and 

A&??, 0=2Y(&i, 1- Q:, 0)- (1-7’) (0.2-40. if3% 01 (3.8b) 

where the index 0 represents the grid points on the 
southern boundary. The parameter y takes either 1 or 0 
depending on whether the difference operator has first- 
order or second-order accuracy. 

4. STABILITY ANALYSIS 

In order to  illuminate differences in the properties of 
the difference schemes described in the previous section, 
we shall discuss the stability conditions of these schemes. 
The study of computational stability for difference 
equations becomes more important when one attempts to  
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integrate the equations for a long term. In this study, 
we shall be concerned only with the stability of difference 
schemes in the von Neumann sense, namely the stability 
of the corresponding linearized system with constant 
coefficients. Moreover, for simplicity, we will deal with 
only the one-dimensional system. 

If we introduce new dimensionless variables 
- 

u ' = ~ ( g q - 1 1 ~ ,  v '=v(gH)-1/2,  and h'=hH-' (4.1) 

where is an averaged height (constant) of the free 
surface, the one-dimensional linearized version of the 
system of (2.1)-(2.3) may be written as 

b2U' (4.2) 
aut -aut - ah' -++u -+c - - j v ' - v  -=o 
at ax ax ax2 1 

dv' - dv' a%' 
bt bX bX2 -+u -+ju'-v -= 0, (4.3) 

(4.4) 

in which denotes an averaged zonal velocity (constant) 
and E=(gm1j2. For simplicity, we shall omit writing 
primes in further references to (4.2)-(4.4).  

The next step is to  write difference equations for (4.2)- 
(4 .4)  corresponding to the formulas (3.3a, b). To save 
space, we shall omit writing the equations. Into the 
resulting equations, we substitute the following Fourier 
terms u1 exp ( ~ K ~ A x )  for u:, and similar expressions for v; 
and h; to eliminate the space dependence of the dependent 
variables. The symbol K denotes the wave number. The 
resulting equations are as follows : 

u '+' = EV '+' + AU '+ BV ' - Gh ' + DU ' - I ,  (4.5) 

u '+'= SV 2+2 -  NU ' + I +  TV ' + I  - 2 Gh '+ +MU ' + WV ', (4.8) 

where 

A=cos p--iU sin p 

B = F ( l - e ) ( l - a )  COS p 

+Fa 
c= EAtlAs 
D = ~ K ( c o s  p- 1 )  
E= EF( 1 -a) 
F=fAt 
G=iCsin 

The right-hand sides of (4.5)-(4.10) contain quantities 
which have the same time index as appears on the left 
hand sides. Therefore, in order to arrange matters so 
that the right hand sides contain only quantities which 
have time indices lower than the ones appearing on the 
left hand sides, we have to make some eliminations of 
appropriate variables. The result of such eliminations is 

where a is the amplification matrix which is the function 
of the physical parameters U, C, F, K, and p. The 
expressions for the elements of the matrix, a,,,, are 
lengthy and to save space we omit writing them here. 
The eigenvalues of the matrix a are the roots { h )  of the 
characteristic equation 

(a- XI( = 0 (4.13) 

where I is the unit matrix. Since the system under 
consideration is a physically stable system, the stability 
condition requires that the eigenvalues do not exceed 
unity in absolute value. The evaluation of the. eigen- 
values of the square matrix of order 6 can be made nu- 
merically for various values of the parameters U, C, F, K, 
and k. However, in order to  understand the roles played 
by these parameters in the stability condition, it is best 
to discuss simpler situations first. 
CASE ( 1 )  F=K=O, UZO, CZO. 

In  this case, we omit terms involving the Coriolis 
parameter and smoothing. The amplification matrix a 
reduces to a square matrix of order 3 and the three eigen- 
values are easily found 

h= 1 - d ( 1  -cos 2p)--iw sin 2 p  (4.14) 

where w stands for the three different values, Ui-C and 
U. The magnitude of h is given by 

Ih12=[1-d(1-cos 2 p ) ] 2 + d  sin2 2p 

= 1 - w y 1  -d) (1 -cos 2p)2. 

K= vAt/(Ax) 
M=1+2D 
N=iU sin p 

S= 2Fe ( 1  -a) 

T=2Fa 
u =VA~/AX 
W = 2 F (  1 - e )  ( 1  -a) 

p=KAx. (4.11) defined by K=2+ where L is the wavelength, the case 

The largest possible value of w is ( U( + C; hence (XI2 21 if 

(4.15) 

It should be pointed out that the magnitude of the 
eigenvalues becomes unity a t  p = O  and P=T; and the 
minima appear a t  p = s / 2  and p=31r/2 under the condi- 
tion (4.15).  Since ~ = K A x  and K is the wave number 
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N It is seen that the magnitude of L? is larger than unity. -- 
1 

10 
102 
101 table 1.  A similar scheme has been investigated by lo( 

The values of amplification [I +4(fAt)4]1"'2 at various cycles 
N for At=7.5 min. are shown in the second column in 

of I.(=* corresponds to that of L=2Ax and I X l = l ;  and 
the case of p=?r/2 corresponds to L=4& and 1x1 is mini- 
mum. This implies that the 2b-wave component 
will not be damped, although the 4Ax-wave component 
will be damped effectively. Therefore, if a long-term 
integration is made using the two-step Lax-Wendroff 
scheme, it is very probable that the 2Ax-wave component 
will eventually dominate. 

CASE (2) U=C=K=O, FZO. 
In this case (4.2)-(4.4) reduce to 

[1+4(fAt)']N/2 [1+4(fAt)~1N/2 [1+4ffAt)21-N/2 
--- 

1.0000082 1.00404 0.985874 
0.960466 1.0000820 1.04116 

1.0008205 1.49686 0.668066 
1.0082349 56.47 0.177089XlW' 
1.0854688 3.30X10" 3.033XlO-L* 

bU bV -- at fv=O, -+ at fU.=O. (4.16) 

This system describes inertia motions and it can be written 
in the form 

%+ifZ=O (4.17) 

with Z defined by 

z=u+ iv, i= (- 1) 1'2. 

The difference equations analogous to  (3.3a1 b) in this 

Z;+'=Zj-iF{ a Z ~ + ( l - a ) [ ( l - ~ ) ~ j + 4 + ~ ]  3, (4.18a) 

case may be written as 
- 

2; +2 = Z! I -2 iF( aZ;+l+ (1 -a)[ (l-~)Zi+eZj+~] } (4.18b) 

where F=-fAt. After substituting the Fourier terms 
2' exp ( i ~ j h )  into (4.18a1 b) and eliminating Z'+' between 
the resulting equations, we obtain 

Z'+Z, QZ' 
where 

st= 1 - 2iF( 1 -a) (1 -E) 

1 + 2iF( 1 -a) r 

Zia.F[COS p--iF(l-a)(l--e) cos p-iFa3 
[1 f i F ~  (1 -a)][ 1 +2iF( 1 -a) E J 2 (4.19) - 

which is the amplification factor. We shall evaluate the 
magnitude of a for the following cases. 

SCHEME A. cy= 1 ("explicit and midway" formulation). 
In this case, (4.19) reduces to 

a = 1 -2iF(cos p - i F )  
and 

(Ql'=(1-2F2)2+4F2 COS' p,. 

The maxima of 1 Q I 2  occur a t  p = O  and p=n and 

l!21&, = l+4F4= 1+4(fAt)4. 

SCHEME B1. a=O, r=O ("explicit-1agging"forrnulation). 
In this case, (4.19) reduces to  

1 -2iF 
and 

I QI2=l+4F2=1+4( fAt)'. 

The values of amplification [l +4(fAt)2]N'2 a t  various 
cycles N for At=7.5 min. are shown in the third column 
in table 1. Note that Scheme B1 yields a large amplifi- 
cation and is not suitable for a long-term integration. 

SCHEME B2. a=O, a=0.5 ("averaging" formulation). 
In this case, (4.19) reduces to 

and 

This scheme, therefore, is neutral. 
SCHEME B3. a=O, E= 1.0 ("implicit" formulation). 
In this case, (4.19) reduces to 

1 
'=(1+2iF) 

I I = (1 + 4 F ') - * . 
and 

The values of amplification [1+4(fAt)2]-N/2 at various 
cycles N a n d  At=7.5 min. are shown in the fourth column 
in table 1.  Note that Scheme B3 causes damping of the 
solution. 

CASE (3) U=C=F=O, KZO. 

In  this case, it is sufficient to consider only (4.2) which 
reduces to 

du a% 
at ax2 
-=v -* (4.20) 

The two-step difference formulation of (4.20) may be 

(4.21a) 
written as 

u$+' =?i; + K (uj - 2ui-l +u; 1 i) , 
u:+'=u:+ K ( u ~  +1-2~: +u:- 1) (4.21b) 

where K= Y At /(Ax) '. 
After substituting the Fourier terms uz exp (i~jAz) into 

(4.21) , the resulting equations in the following matrix 
form are derived: 

TABLE 1.-The values of amplification for f = i W  set.-' and A t =  
7.6 min. 
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I I I I I I I I I I I  

- 
Unstable - 

- 

- 

- 

- 

- 
K =  0.2 - 

- Stable - 
1 

where 
2K(cos p-1) cos p 

0 ~ $ ~ K ( c o s  p-1)  
b=( 

The eigenvalues of i3 are readily found; they are 

X1=2K(COS p - l ) ,  h2=1+4K(COS p-1 ) .  

The stability requirement that the eigenvalues should not 
exceed unity in magnitude establishes the stability con- 
dition that 

K l o r -  1 vAt <i 
  AX)^ - 4 

Note that the magnitude of 
p#O and K<t. 
CASE (4) F=O, U#O, C#O, K#O. 

In this case, the amplification matrix a in (4.12) is a 
square matrix of order 6. The eigenvalues of a are 
evaluated numerically by using a subroutine, EIG 4, 
written by B. N. Parlett. Figure 1 illustrates the domain 
of stability shown using the (IUl, C)  coordinate plane for 
various values of K. 

is less than unity for 

I 

CASE (5) U z o ,  C z o ,  K#O, F#O. 
This is the general case. Equation (4.13) was solved 

numerically to obtain the eigenvalues. To save computing 
time, the value of F was taken to be 0.045 corresponding 
to At=7.5 min. and the value of K was taken to be 

These 
values of F and K appear to be so small that the stability 
criterion for this general case may be expressed in practice 
by combining the stability conditions discussed separately 
in Cases (l), (2), and (3). 

5. INITIAL CONDITIONS 
Identical initial conditions are used in all of the numeri- 

cal experiments except for the one case in which the 
growth of a small initial “error” is investigated. The 
initial conditions represent a westerly jet flow with a 
small north-south undulation along the jet axis. In 
order to suppress unwanted gravity-inertial waves from 
the solution, the initial height and velocity fields are 
prescribed from a given stream function field as follows: 

The initial height field is obtained from the prescribed 
stream function field by requiring the following balance 
condition to be satisfied : 

’ 0.00273 corresponding to v=3.5X lo5 m.2 set.-' 

I 

where p=af/by. The terms on the right hand side of 
(5.1) are evaluated in the interior of the channel. In  
order to solve the Poisson equation (5.1) for h, the values 
on the boundaries rn-ust be specified. The values o n  the 
eastern and western boundaries are easily obtained from 
the periodicity conditions. The values on the northern 
and southern boundaries are two different constants 
h, and x, which are calculated from 
- 

0 0.2 0.4 0.6 0.8 1.0 1.2 
- A t  IUI ( I  IUI E 1 

FIGURE 1.-The domain of stability shown on the (IUI, C) coordinate 
plane for various values of K.  

(5.2) 

zSn= - 
- 

where +=- yidx, and y = O  is located in the middle of 

the channel where h=ho. Here W is the width of the 
channel and L is the basic wavelength in the east-west 
direction. Likewise, h,, is obtained from (5.2) except 
that the upper integration limit is replaced by -W/2. 

The divergent part of the velocity field is computed 
from the prescribed stream function field with a quasi- 
geostrophic divergence equation suggested by Phillips [3] : 

- 

w w- 
G X  1: (:Y >a,- ax  

,vD-~D+ sho 2 - v +  -- - v +  - p--0 (5.3) 
f - 

where D is the divergence and f an average value of the 
Coriolis parameter. In order to solve (5.3), the assump- 
tion is made that the divergence vanishes on the northern 
and southern boundaries. The periodicity conditions 
are applied at the eastern and western boundaries. 

The velocity potential, x, is then obtained from the 
divergence by the relationship, 

V2x=D, (5.4) 

assuming the velocity potential to be zero at  both the 
northern and southern boundaries. 

Finally the velocity components are obtained from the 
stream function and velocity potential by the relationships, 

w ax and v=-+--. by a x  bx by 
u=--+- w ax 

The initial stream function is given by 

(5.5) 
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Experiment 

_-___ 

L J 

where $ is the stream function, Go is the amplitude, yo is 
the mean latitude of the jet axis, p is the north-south 
amplitude of the jet axis, and d is a parameter which 
determines the width of the jet. Since the stream func- 
tion should be constant along each of the northern and 
southern boundaries to  be consistent with the condition 
that v=O there, (5.6) cannot be used right up to these 
boundaries. Instead (5.6) is applied to within three grid 
positions from each boundary and then a linear y-direction 
gradient is assumed between there and the boundary. 
The boundary value is set equal to  the zonal average of 
the stream function three grid distances away as prescribed 
by (5.6) for each boundary respectively. 

In the numerical calculations the following values are 
adopted : 

Coefficient of Boundary 
Coriolis term Smoothing Condition i (m.2 sec.-I) I-- 

1)~=1.44XlO~ m.* set.-' 
yo= l l A S  i= 10-~ set.-' 
p= AS p= 1.57 X sec.-l m.-I 

L=24As (value a t  the latitude 
d = 2 A ~  43' N.) 
ho=5000 m. A~=240,000 m. 

g=1.4 m. sec.-2 

A ................... 
B 
C ................... 
D .................. 

E 

F 
0 
H 
I ................... 

.................. 

................... 

................... 

................... 

.................. 

The time increment, At, is set equal to 450 sec. to satisfy 
the stability requirements discussed in the previous 
section. The basic grid is 24 x 21 in the east-west and 
north-south directions respectively. 

Figure 2 shows the initial height field used for the experi- 
ments. In the experiment where a small initial error is 
introduced, the height a t  the center grid point is increased 
by 0.1 percent. This change is too small to  be noticed in 
the height field as presented in figure 2 .  

Explicit and mid-way (a=]). ....... 
Explicit and mid-way (u=l)--. 0 
Explicit and midway (a=]) ........ 
Explicit and mid-way (u=l).- ...... 

Explicit and mid-way (u=l).  0 

Averaging (u=O, *=0.5) 0 
Implicit (ar=O,  c=l.O) 0 

3.5X103 

3.5X105 
3.5XlW 

..... 

....... 

........ 0 Explicit lagging (u=O, e=O). 

Explicit and mid-way (u=1) ........ 

............. 
............... 

3.5X101 

6. RESULTS 
Eight of these used 

different values of a, E, and y in the finite-difference 
equations (3.3a, b) and (3.8a, b) together with various 
values for the coefficient of Fickian smoothing henceforth 
referred to as the coefficient of smoothing. A tabulation 
of these experiments is given in table 2 .  The last experi- 

Nine experiments were made. 

First Order 
First Order 
First Order 
Second 

Order. 
Second 

Order. 
First Order 
First Order 
First Order 
First Order 

HEIGHT 0 DAYS 

I L E  

FIGURE 2.--Initial height field in meters as used for the calculations. 
The 0.1 percent error in the height in one of the experiments is too 
small to  be represented. The grid spacing is shown to  the scale of 
the map in the lower left corner. 

T I M E  (DAYS) 

FIGURE 3.-Total energy of the model plotted against time for each 
of the nine experiments. 

ment I is identical to the first one, A, except for a small 
difference in the initial conditions. The large value for 
the coefficient of smoothing in experiment C corresponds 
to the value of kinematic eddy viscosity derived by 
Richardson [4] to simulate the effect of motions at  scales 
too small to  be explicitly represented in the grid. 

Figure 3 shows the computed total energy defined by 
(2.5) for each of the nine experiments. The effect of the 
Coriolis formulation on the solution is clearly evident. 
Experiments B, F, G, and H demonstrate the differences, 
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HEIGHT EXPERIMENT A 5 0  DAYS 

-3300 ~ 

E D C  

-3900 / 

-4500-> / - 
-5100 -z 

I I 

I I 

FIGURE 4.-(a) Height field for experiment A after 50 days. (b) 
Height field for experiment A after 100 days. The solutions given 
by the two partial sets of the grid network are shown separately, 
with solid and dashed lines. See text. 

for they are similar in all respects except for the Coriolis 
formulation. As predicted by the stability analysis, 
experiment F shows an instability and experiment H 
shows a damped solution. The very nearly neutral 
stability for the “Explicit and mid-way” Coriolis formula- 
tion is consistent with the relatively constant energy in 
experiment B for the first 60 days. The damping in 
experiment G and its similarity to experiment H may 
not be explained by linear stability considerations only. 

Experiments A, B, C, D, E, and I all have the same 
CoriolG formulation, the one which appears t o  give the 
most neutral results. From these results it may be 
concluded that the second-order boundary conditions 

20 ,b 7b ,b ,b 100 0 

TIME (DAYS)  

FIGURE .5.-Root mean square of the difference in height field 
between experiment A and each of the other experiments averaged 
over the entire domain. The scale on the right expresses the root 
mean square value in units of the standard deviation in the height 
field in the initial conditions, the quantity being identical for all 
the experiments except experiment I which differs ever so slightly. 

tend to be more unstable compared with the first-order 
boundary conditions (comparing A and B to D and E 
respectively). In  addition it may be observed that the 
Fickian smoothing tends to stabilize the solutions (com- 
paring A and D to B and E, respectively) although a 
larger smoothing, as introduced in C, has a large damping 
effect. 

The development of instability in experiments B, D, 
and E after a long time period may be considered due to 
both the Coriolis formulation and the separation of two 
loosely coupled lattices in the difference formulation, 
since the linear stability analysis discussed in section 4 
indicates that the 2Ax-wave component receives no 
damping but very slight amplification for Scheme A. 
The growth of the 2h-wave occurs eventually in experi- 
ments A, B, D, E, and I. Even though experiment A 
shows good total energy characteristics, a choppy pattern 
develops after about 65 days which makes the details of 
the solution very unrealistic. Figures 4a and 4b show 
the height field for experiment A after 50 and 100 days. 
At 50 days the choppy pattern is not noticeable but the 
100-day map shows the development of a 2Az-wave 
pattern. In order to give some insight into the nature of 
the choppiness, the height map a t  100 days is shown as 
two superimposed patterns ; one shows the height field 
depicted by the grid points where j f k  is an even number, 
and the other shows the height where j+k is an odd 
number, where j and k represent grid coordinates in the 
2- and y-direction respectively. Note that each is still 
very smooth  but the two patterns are out of phase. The 
large differences between the two solutions indicate the 
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presence of large 2Ax perturbation; the smoothness of 
each shows that the 4Ax-wave component did not grow, 
as predicted from the stability analysis. 

A display of the differences in the details of the solutions 
due to  the differences in difference formulation and initial 
conditions is given in figure 5. Here the differences 
betweer, the height field of experiment A and all the others 
are shown as the root mean square of the height differences 
defined by 

1 1 1 2  

where j and k identify the grid position and n is the total 
number of grid points. Superscript A refers to experi- 
ment A and superscript X refers to any one of the others. 
Experiment A was chosen as the reference for this calcu- 
lation since it shows the “best” total energy characteris- 
tics. Figure 5 shows that all the solutions differ sig- 
nificantly from experiment A by 50 days, a fact not clearly 
demonstrated in figure 3. 

The value for the root mean square of the height differ- 
ences is compared to the initial standard deviation in 
height on the right-hand scale in order to relate the 
magnitude of the differences between experiments to the 
magnitude of the variation in height originally present in 
each experiment. Note that according to the root mean 
square calculation, the subsequent differences due to small 
initial errors are of the same magnitude as those due to 
relatively small differences in the finite-diff erence equa- 
tions. In  other words, the sensitivity of the solution to 
the finite-diff erence formulation is similar to the sensitiv- 
ity of the initial conditions for this particular example. 

Figures 6a, 6b, and 6c show three height difference maps 
a t  50 days to describe in more detail the differences be- 
tween certain solutions. Figure 6a shows the difference 
due to a small amount of Fickian smoothing. Effects are 
largest in the regions of strongest velocity. Figure 6b 
shows differences due to boundary condition variations. 
Effects are largest near the northern boundary. Figure 
6c shows differences due to small initial differences. Ef- 
fects are again largest in the regions of largest fluid ve- 
locity. In the last diagram, the two lattice-separated 
solutions are shown individually, since by 50 days some 
separation of lattice effects had already appeared in the 
solution for experiment I. Note that the maximum dif- 
ference in height in these three cases is at least twice as 
large as the root mean square of the height difference. 

FIGURE 6.-Differences in height (m.) after 50 days between (a) 
experiments B and A; (b) experiments D and A; (c) experiments 
I and A. In  (c) the solutions given by the two partial sets of the 
grid network are shown separately, with solid and dashed lines. 
See text. 
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7. REMARKS 

The calculations show that it is possible to obtain a 
stable and relatively neutral long-term solution for a sim- 
ple meteorological model without introducing a large 
amount of smoothing. Nevertheless, the schemes without 
a large degree of smoothing all developed unrealistic 
patterns in the solut’ion possibly because of the separation 
of two different lattices. The calculations suggest that 
the two-step Lax-Wendroff scheme is useful for long-term 
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